JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Role of regenerating gene I in claudin expression and barrier function in the small intestine.

We have recently shown that loss of the regenerating gene (Reg) I causes susceptibility to nonsteroidal anti-inflammatory drug-induced gastrointestinal damage. However, the mechanism by which Reg I plays a protective role against this pathophysiological condition is unclear. Here, we investigated whether Reg I plays roles in the induction of tight junction proteins and mucosal barrier function in the small intestine. The small-intestinal permeability was evaluated in Reg I-deficient mice by FITC-dextran and transepithelial electrical resistance (TEER) assay. The effect of REG Iα on TEER, claudins expression, and intracellular signaling was examined using Caco2 cells in vitro. Small-intestinal expression of claudins 3 and 4 was investigated in Reg I-deficient mice in vivo. REG I deficiency significantly decreased the expression of claudin 3 in the small-intestinal epithelium. When mice were treated with indomethacin, the serum level of FITC-dextran in Reg I knockout mice was significantly higher than that in wild-type (WT) mice. The level of small-intestinal TEER was significantly decreased in Reg I knockout mice compared with WT mice under normal condition. REG Iα stimulation significantly enhanced the level of TEER in Caco2 cells. Treatment with REG Iα enhanced the expression of claudins 3 and 4 and promoted Sp1, Akt, and ERK phosphorylation in Caco2 cells, whereas these effects were attenuated by treatment with anti-REG Iα antibody. Reg I may play a role in the maintenance of mucosal barrier function by inducing tight junction proteins such as claudins 3 and 4.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app