Add like
Add dislike
Add to saved papers

Quadriceps Strength Predicts Self-reported Function Post-ACL Reconstruction.

INTRODUCTION/PURPOSE: Quadriceps strength is a useful clinical predictor of self-reported function after anterior cruciate ligament reconstruction (ACLR). However, it remains unknown if quadriceps strength normalized to body mass (QBM) or quadriceps strength limb symmetry index (QLSI) is the best predictor of self-reported function in individuals with ACLR. We sought to determine whether QBM and QLSI are able to predict individuals with ACLR who self-report high function (≥90% on the international knee documentation committee (IKDC) index).

METHODS: Ninety-six individuals with a history of a primary unilateral ACLR were recruited for a multisite cross-sectional descriptive laboratory experiment. Bilateral isometric quadriceps strength was collected at 90° of knee flexion to calculate QBM and QLSI (ratio of the ACLR limb to the contralateral limb). Area under the curve (AUC) values were calculated using receiver operating characteristic curve analyses to determine the capacity of QBM and QLSI to predict individuals with high self-reported function on the IKDC index.

RESULTS: QBM displayed high accuracy (AUC = 0.76; 95% confidence interval, 0.66-0.86) for identifying participants with an IKDC index ≥90%. A QBM cutoff score of 3.10 N·m·kg was found to maximize sensitivity (0.61) and specificity (0.84), and displayed 8.15 (3.09-21.55) times higher odds of reporting high function. QLSI displayed a moderate accuracy (AUC = 0.62, 0.50-0.73) for identifying participants with an IKDC index ≥90%. A QLSI cutoff score of 96.5% maximized sensitivity (0.55) and specificity (0.70), and represented 2.78 (1.16-6.64) times higher odds reporting high function.

CONCLUSION: QBM is a stronger predictor of high self-reported function compared with QLSI in individuals with ACLR. Rehabilitation guidelines may benefit from incorporating the use of QBM measurements for the purpose of predicting participants that may maintain high self-reported function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app