Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A new label-free fluorescent sensor for human immunodeficiency virus detection based on exonuclease III-assisted quadratic recycling amplification and DNA-scaffolded silver nanoclusters.

Analyst 2016 May 11
A label-free and sensitive fluorescence biosensing platform for human immunodeficiency virus gene (HIV-DNA) detection has been fabricated based on luminescent DNA-scaffolded silver nanoclusters (DNA/AgNCs) and autonomous exonuclease III (Exo III)-assisted recycling signal amplification. One long-chain DNA (X-DNA) molecule can hybridize with two assistant DNA (F-DNA) molecules and one HIV-DNA molecule; after Exo III digests X-DNA to liberate F-DNA and HIV-DNA. F-DNA combines with P-DNA (template of DNA/AgNCs), accordingly, P-DNA is cut and the fluorescence of the system is quenched. This assay can finish in one-step without any labelling of the DNA chain or complex construction, and the strategy is sensitive with the detection limit as low as 35 pM. At the same time, the approach exhibits good selectivity even against a single base mismatch. What's more, the method is able to monitor HIV-DNA in real human serum samples; it holds great potential for early diagnosis in gene-related diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app