Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A Simple and Fast Semiautomatic Procedure for the Atomistic Modeling of Complex DNA Polyhedra.

A semiautomatic procedure to build complex atomistic covalently linked DNA nanocages has been implemented in a user-friendly, free, and fast program. As a test set, seven different truncated DNA polyhedra, composed by B-DNA double helices connected through short single-stranded linkers, have been generated. The atomistic structures, including a tetrahedron, a cube, an octahedron, a dodecahedron, a triangular prism, a pentagonal prism, and a hexagonal prism, have been probed through classical molecular dynamics and analyzed to evaluate their structural and dynamical properties and to highlight possible building faults. The analysis of the simulated trajectories also allows us to investigate the role of the different geometries in defining nanocages stability and flexibility. The data indicate that the cages are stable and that their structural and dynamical parameters measured along the trajectories are slightly affected by the different geometries. These results demonstrate that the constraints imposed by the covalent links induce an almost identical conformational variability independently of the three-dimensional geometry and that the program presented here is a reliable and valid tool to engineer DNA nanostructures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app