Add like
Add dislike
Add to saved papers

β-Lapachone Induces NAD(P)H:Quinone Oxidoreductase-1- and Oxidative Stress-Dependent Heat Shock Protein 90 Cleavage and Inhibits Tumor Growth and Angiogenesis.

UNLABELLED: β-Lapachone [β-lap; 3,4-dihydro-2,2-dimethyl-2H-naphthol[1,2-b]pyran-5,6-dione] is a novel anticancer drug currently under investigation in phase I/II clinical trials. However, the mechanism underlying its clinical efficacy remains unclear. In this study, we found that β-lap provoked the cleavage of heat shock protein 90 (Hsp90) in

NAD(P)H: quinone oxidoreductase-1 (NQO1)-expressing lung and prostate cancer cells as well as in primary human umbilical vein endothelial cells (HUVECs). These actions of β-lap were different from that of the conventional Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin. As a consequence of Hsp90 cleavage, Hsp90-associated oncoproteins, such as receptor-interacting protein, Raf-1, AKT, and CDK4, were degraded in treated cancer cells, and key receptor tyrosine kinases such as vascular endothelial cell growth factor receptor-2 and Her-2 were degraded in treated HUVECs through a proteasomal system. Further results revealed that specific inhibitors of NQO1 and reactive oxygen species could dramatically reduce β-lap-mediated Hsp90 cleavage. In addition to its cytotoxicity, β-lap effectively inhibited angiogenesis by suppressing tube formation and the invasion of HUVECs in vitro, rat aortic microvascular sprouts ex vivo, and mouse corneal neovascularization in vivo. Furthermore, β-lap markedly suppressed the growth and angiogenesis of human lung cancer xenografts in nude mice and decreased the levels of receptor-interacting protein, AKT, CDK4, and CD31 in the solid tumors. Unlike other NQO1-dependent cytotoxic quinones, such as streptonigrin, menadione, mitomycin, and 17-allylamino-17-demethoxygeldanamycin, β-lap was the only agent that could cause Hsp90 cleavage. Taken together, our results suggest a crucial mechanism underlying the antitumor efficacy of β-lap.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app