Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Segregated Ice Growth in a Suspension of Colloidal Particles.

We study the freezing of a dispersion of colloidal silica particles in water, focusing on the formation of segregated ice in the form of ice lenses. Local temperature measurements in combination with video microscopy give insight into the rich variety of factors that control ice lens formation. We observe the initiation of the lenses, their growth morphology, and their final thickness and spacing over a range of conditions, in particular the effect of the particle packing and the cooling rate. We find that increasing the particle density drastically reduces the thickness of lenses but has little effect on the lens spacing. Therefore, the fraction of segregated ice formed reduces. The effect of the cooling rate, which is the product of the temperature gradient and the pulling speed across the temperature gradient, depends on which parameter is varied. A larger temperature gradient causes ice lenses to be initiated more frequently, while a lower pulling speed allows for more time for ice lenses to grow: both increase the fraction of segregated ice. Surprisingly, we find that the growth rate of a lens does not depend on its undercooling. Finally, we have indications of pore ice in front of the warmest ice lens, which has important consequences for the interpretation of the measured trends. Our findings are relevant for ice segregation occurring in a wide range of situations, ranging from model lab experiments and theories to geological and industrial processes, like frost heave and frozen food production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app