Add like
Add dislike
Add to saved papers

Effects of Resveratrol on p66Shc phosphorylation in cultured prostate cells.

There is increasing evidence that diet plays a crucial role in age-related diseases and cancer. Oxidative stress is a conceivable link between diet and diseases, thus food antioxidants, counteracting the damage caused by oxidation, are potential tools for fight age-related diseases and cancer. Resveratrol (RSV), a polyphenolic antioxidant from grapes, has gained enormous attention particularly because of its ability to induce growth arrest and apoptosis in cancer cells, and it has been proposed as both chemopreventive and therapeutic agent for cancer and other diseases. Even though the effects of RSV have been studied in prostate cancer cells and animal models, little is known about its effects on normal cells and tissues. To address this issue, we have investigated the effects of RSV on EPN cells, a human non-transformed prostate cell line, focusing on the relationship between RSV and p66Shc, a redox enzyme whose activities strikingly intersect those of RSV. p66Shc activity is regulated by phosphorylation of serine 36 (Ser36) and has been related to mitochondrial oxidative stress, apoptosis induction, regulation of cell proliferation and migration. Here we show that RSV inhibits adhesion, proliferation and migration of EPN cells, and that these effects are associated to induction of dose- and time-dependent p66Shc-Ser36 phosphorylation and ERK1/2 de-phosphorylation. Moreover, we found that RSV is able to activate also p52Shc, another member of the Shc protein family. These data show that RSV affects non-transformed prostate epithelial cells and suggest that Shc proteins may be key contributors of RSV effects on prostate cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app