JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Clg2p interacts with Clf and ClUrase to regulate appressorium formation, pathogenicity and conidial morphology in Curvularia lunata.

Scientific Reports 2016 April 5
Ras is a small GTPase that regulates numerous processes in the cellular development and morphogenesis of many organisms. In this study, we identified and functionally characterized the Clg2p gene of Curvularia lunata, which is homologous with the Ras protein. The Clg2p deletion mutant (ΔClg2p) had altered appressorium formation and conidial morphology and produced fewer, smaller lesions compared with the wild-type strain. When a dominant Clg2p allele was introduced into the mutant, all of these defective phenotypes were completely restored. To further understand the regulation of Clg2p in appressorium formation and conidial morphology, and its role in pathogenicity, seven Clg2p-interacting proteins were screened using a yeast two-hybrid assay. Two of these proteins, Clf, a homologue of Mst11, which corresponds to MAP kinase kinase kinase in Magnaporthe oryzae, and urate oxidase (designated ClUrase) were functionally characterized. Clg2p specifically interacted with Clf through its RA domain to regulate appressorium formation and pathogenicity, whereas the Clg2p-ClUrase interaction regulated conidial morphology without affecting fungal pathogenicity. This report is the first to elucidate the regulatory mechanism of the key Ras protein Clg2p in C. lunata.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app