Add like
Add dislike
Add to saved papers

7-Ketocholesterol is increased in the plasma of X-ALD patients and induces peroxisomal modifications in microglial cells: Potential roles of 7-ketocholesterol in the pathophysiology of X-ALD.

X-linked adrenoleukodystrophy (X-ALD) is a genetic disorder induced by a mutation in the ABCD1 gene, which causes the accumulation of very long-chain fatty acids in tissue and plasma. Oxidative stress may be a hallmark of X-ALD. In the plasma of X-ALD patients with different forms of the disease, characterized by high levels of C24:0 and C26:0, we observed the presence of oxidative stress revealed by decreased levels of GSH, α-tocopherol, and docosahexaenoic acid (DHA). We showed that oxidative stress caused the oxidation of cholesterol and linoleic acid, leading to the formation of cholesterol oxide derivatives oxidized at C7 (7-ketocholesterol (7KC), 7β-hydroxycholesterol (7β-OHC), and 7α-hydroxycholesrol (7α-OHC)) and of 9- and 13-hydroxyoctadecadienoic acids (9-HODE, 13-HODE), respectively. High levels of 7KC, 7β-OHC, 7α-OHC, 9-HODE and 13-HODE were found. As 7KC induces oxidative stress, inflammation and cell death, which could play key roles in the development of X-ALD, the impact of 7KC on the peroxisomal status was determined in microglial BV-2 cells. Indeed, environmental stress factors such as 7KC could exacerbate peroxisomal dysfunctions in microglial cells and thus determine the progression of the disease. 7KC induces oxiapoptophagy in BV-2 cells: overproduction of H2 O2 and O2 - , presence of cleaved caspase-3 and PARP, nuclear condensation and/or fragmentation; elevated [LC3-II/LC3-I] ratio, increased p62 levels. 7KC also induces several peroxisomal modifications: decreased Abcd1, Abcd2, Abcd3, Acox1 and/or Mfp2 mRNA and protein levels, increased catalase activity and decreased Acox1-activity. However, the Pex14 level was unchanged. It is suggested that high levels of 7KC in X-ALD patients could foster generalized peroxisomal dysfunction in microglial cells, which could in turn intensify brain damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app