Add like
Add dislike
Add to saved papers

Scan time minimization in hepatic diffusion-weighted imaging: evaluation of the simultaneous multislice acceleration technique with different acceleration factors and gradient preparation schemes.

Magma 2016 October
OBJECTIVE: To evaluate simultaneous multislice (sms) accelerated diffusion-weighted imaging (DWI) of the liver in comparison to conventional sequences.

MATERIALS AND METHODS: Ten volunteers underwent DWI of the liver at 1.5 T. Four different sms-accelerated sequences with monopolar and bipolar gradient preparation (MP, BP) and acceleration factors 2 and 3 (sms2-DWI, sms3-DWI) were compared to conventional DWI (c-DWI). Image quality criteria rated on a 5-point Likert scale (5 = excellent), image quality sum scores (maximum 120), and ADC were compared using Friedman test and Dunn-Bonferroni post hoc test. Bland-Altman plots were calculated for ADC comparison. p values <0.05 were considered significant.

RESULTS: Sms2-DWI offered scan time minimization of 67 % without significant difference in image quality (sum score: sms2-DWI MP/BP: 97 ± 8/92 ± 9; c-DWI MP/BP: 99 ± 8/97 ± 8). Sms3-DWI offered slight additional scan time minimization with significantly inferior image quality (sum score: sms3-DWI MP/BP: 75 ± 14/69 ± 14; p < 0.001). MP preparation provided slightly higher image quality in sms-DWI without statistical significance. ADC in sms-DWI were significantly lower (sms2-DWI MP 1.01 × 10(-3) mm(2)/s; c-DWI MP 1.20 × 10(-3) mm(2)/s; p < 0.001).

CONCLUSION: Sms2-DWI provides considerable scan time minimization without significant shortcomings in image quality. Sms3-DWI provides significantly inferior image quality without further scan time minimization. Potentially lower ADC in sms-DWI should be considered in clinical routine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app