Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Functional symbiosis and communication in microbial ecosystems. The case of wood-eating termites and cockroaches.

Animal hosts typically have strong specificity for microbial symbionts and their functions. The symbiotic relationships have enhanced the limited metabolic networks of most eukaryotes by contributing several prokaryotic metabolic capabilities, such as methanogenesis, chemolithoautotrophy, nitrogen assimilation, etc. This review will examine the characteristics that determine bacterial "fidelity" to certain groups of animals (e.g., xylophagous insects, such as termites and cockroaches) over generations and throughout evolution. The hindgut bacteria of wood-feeding termites and cockroaches belong to several phyla, including Proteobacteria, especially Deltaproteobacteria, Bacteroidetes, Firmicutes, Actinomycetes, Spirochetes, Verrucomicrobia, and Actinobacteria, as detected by 16S rRNA. Termites effectively feed on many types of lignocelluloses assisted by their gut microbial symbionts. Although the community structures differ between the hosts (termites and cockroaches), with changes in the relative abundances of particular bacterial taxa, the composition of the bacterial community could reflect at least in part the host evolution in that the microbiota may derive from the microbiota of a common ancestor. Therefore, factors other than host phylogeny, such as diet could have had strong influence in shaping the bacterial community structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app