Add like
Add dislike
Add to saved papers

Microsleeps are Associated with Stage-2 Sleep Spindles from Hippocampal-Temporal Network.

Behavioral microsleeps are associated with complete disruption of responsiveness for [Formula: see text][Formula: see text]s to 15[Formula: see text]s. They can result in injury or death, especially in transport and military sectors. In this study, EEGs were obtained from five nonsleep-deprived healthy male subjects performing a 1[Formula: see text]h 2D tracking task. Microsleeps were detected in all subjects. Microsleep-related activities in the EEG were detected, characterized, separated from eye closure-related activity, and, via source-space-independent component analysis and power analysis, the associated sources were localized in the brain. Microsleeps were often, but not always, found to be associated with strong alpha-band spindles originating bilaterally from the anterior temporal gyri and hippocampi. Similarly, theta-related activity was identified as originating bilaterally from the frontal-orbital cortex. The alpha spindles were similar to sleep spindles in terms of frequency, duration, and amplitude-profile, indicating that microsleeps are equivalent to brief instances of Stage-2 sleep.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app