JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mechanical Alterations to Repeated Treadmill Sprints in Normobaric Hypoxia.

PURPOSE: Compelling evidence suggests larger performance decrements during hypoxic versus normoxic repeated sprinting. Yet the underlying mechanical alterations have not been thoroughly investigated. Therefore, we examined the effects of different levels of normobaric hypoxia on running mechanical performance during repeated treadmill sprinting.

METHODS: Thirteen team sport athletes performed eight 5-s sprints with 25 s of passive recovery on an instrumented treadmill in either normoxia near sea level (SL; FiO2 = 20.9%), moderate normobaric hypoxia (MH; FiO2 = 16.8%; corresponding to ~1800 m altitude), or severe normobaric hypoxia (SH; FiO2 = 13.3%; ~3600 m).

RESULTS: Net power output in the horizontal direction did not differ (P > 0.05) between conditions for the first sprint (mean ± SD, pooled values: 13.09 ± 1.97 W·kg) but was lower for the eight sprints in SH compared with SL (-7.3% ± 5.5%, P < 0.001) and MH (-7.1% ± 5.9%, P < 0.01), with no difference between SL and MH (+0.1% ± 8.0%, P = 1.00). Sprint decrement score was similar between conditions (pooled values: -11.4% ± 7.9%, P = 0.49). Mean vertical, horizontal, and resultant ground reaction forces decreased (P < 0.001) from the first to the last repetition in all conditions (pooled values: -2.4% ± 1.9%, -8.6% ± 6.5%, and -2.4% ± 1.9%). This was further accompanied by larger kinematic (mainly contact time: +4.0% ± 2.9%, P < 0.001, and +3.3% ± 3.6%, P < 0.05, respectively; stride frequency: -2.3% ± 2.0%, P < 0.01, and -2.3% ± 2.8%, P < 0.05, respectively) and spring-mass characteristics (mainly vertical stiffness: -6.0% ± 3.9% and -5.1% ± 5.7%, respectively, P < 0.01) fatigue-induced changes in SH compared with SL and MH.

CONCLUSION: In SH, impairments in repeated sprint ability and in associated kinetics/kinematics and spring-mass characteristics exceed those observed near SL and in MH (i.e., no or minimal difference). Specifically, SH accentuates the repeated sprint ability fatigue-related inability to effectively apply forward-oriented ground reaction force and to maintain vertical stiffness and stride frequency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app