Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Involvement of Rab6a in organelle rearrangement and cytoskeletal organization during mouse oocyte maturation.

Scientific Reports 2016 March 32
Rab GTPases have been reported to define the identity and transport routes of vesicles. Rab6 is one of the most extensively studied Rab proteins involved in regulating organelle trafficking and integrity maintenance. However, to date, the function of Rab6 in mammalian oocytes has not been addressed. Here we report severe disorganization of endoplasmic reticulum upon specific knockdown of Rab6a in mouse oocytes. In line with this finding, intracellular Ca(2+) stores are accordingly reduced in Rab6a-depleted oocytes. Furthermore, in these oocytes, we observe the absence of cortical granule free domain, which is a kind of special organelle in matured oocytes and its exocytosis is calcium dependent. On the other hand, following Rab6a knockdown, the prominent defects of cytoskeletal structures are detected during oocyte meiosis. In particular, the majority of Rab6a-depleted oocytes fail to form the actin cap, and the frequency of spindle defects and chromosome misalignment is significantly elevated. In summary, our data reveal that Rab6a not only participates in modulating the organization of oocyte organelles, but also is a novel regulator of meiotic apparatus in mammalian oocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app