Add like
Add dislike
Add to saved papers

Analysis of the mechano-acoustic influence of the tympanic cavity in the auditory system.

BACKGROUND: The main objective of this paper is to study the mechanical influence of the tympanic cavity (TC) in the auditory system (AS). It is done for a frequency range from 0.1 to 20 kHz and the pressure source was applied in the external ear canal (EEC) entrance.

METHODS: Numerical simulations were developed for seven different models by means of finite element model. On the basis of an EEC finite elements model, the additional elements are coupled and removed in order to evaluate the contribution of the TC. Tympanic membrane, ossicular chain, simplified cochlea and TC were modeled and simulated in four different combinations.

RESULTS: Pressure, velocity, and displacement measures were obtained in AS key points in order to be compared with experimental results. Umbo and stapes transfer functions have been represented.

CONCLUSIONS: The main conclusion is that we find evidence that the presence of the TC in the AS introduces a second resonance in middle ear transfer functions at frequencies above 3 kHz.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app