Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Structural Characterization and Bioactivity Analysis of the Two-Component Lantibiotic Flv System from a Ruminant Bacterium.

Cell Chemical Biology 2016 Februrary 19
The discovery of new ribosomally synthesized and post-translationally modified peptide natural products (RiPPs) has greatly benefitted from the influx of genomic information. The lanthipeptides are a subset of this class of compounds. Adopting the genome-mining approach revealed a novel lanthipeptide gene cluster encoded in the genome of Ruminococcus flavefaciens FD-1, an anaerobic bacterium that is an important member of the rumen microbiota of livestock. The post-translationally modified peptides were produced via heterologous expression in Escherichia coli. Subsequent structural characterization and assessment of their bioactivity revealed features reminiscent of and distinct from previously reported lanthipeptides. The lanthipeptides of R. flavefaciens FD-1 represent a unique example within two-component lanthipeptides, consisting of a highly conserved α-peptide and a diverse set of eight β-peptides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app