JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

N-Acetylcysteine reduces hyperacute intermittent hypoxia-induced sympathoexcitation in human subjects.

NEW FINDINGS: What is the central question of this study? This study evaluated the following central question: does N-acetylcysteine (N-AC), an antioxidant that readily penetrates the blood-brain barrier, have the capability to reduce the increase in sympathetic nerve activity observed during hyperacute intermittent hypoxia? What is the main finding and its importance? We demonstrate that N-AC decreases muscle sympathetic nerve activity in response to hyperacute intermittent hypoxia versus placebo control. This finding suggests that antioxidants, such as N-AC, have therapeutic potential in obstructive sleep apnoea. This investigation tested the following hypotheses: that (i) N-acetylcysteine (N-AC) attenuates hyperacute intermittent hypoxia-induced sympathoexcitation, (ii) without elevating superoxide measured in peripheral venous blood. Twenty-eight healthy human subjects were recruited to the study. One hour before experimentation, each subject randomly ingested either 70 mg kg(-1) of N-AC (n = 16) or vehicle placebo (n = 12). Three-lead ECG and arterial blood pressure, muscle sympathetic nerve activity (n = 17) and whole-blood superoxide concentration (using electron paramagnetic resonance spectroscopy; n = 12) were measured. Subjects underwent a 20 min hyperacute intermittent hypoxia training (hAIHT) protocol that consisted of cyclical end-expiratory apnoeas with 100% nitrogen. N-AC decreased muscle sympathetic nerve activity after hAIHT compared with placebo (P < 0.02). However, N-AC did not alter superoxide concentrations in venous blood compared with placebo (P > 0.05). Moreover, hAIHT did not increase superoxide concentrations in the peripheral circulation as measured by electron paramagnetic resonance (P > 0.05). Based on these findings, we contend that (i) hAIHT and (ii) the actions of N-AC in hAIHT are primarily mediated centrally rather than peripherally, although central measurements of reactive oxygen species are difficult to obtain in human subjects, thus making this assertion difficult to verify. This investigation suggests the possibility of developing a pharmaceutical therapy to inhibit the sympathoexcitation associated with obstructive sleep apnoea.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app