Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Reliable Detection of Mismatch Repair Deficiency in Colorectal Cancers Using Mutational Load in Next-Generation Sequencing Panels.

PURPOSE: Tumor screening for Lynch syndrome is recommended in all or most patients with colorectal cancer (CRC). In metastatic CRC, sequencing of RAS/BRAF is necessary to guide clinical management. We hypothesized that a next-generation sequencing (NGS) panel that identifies RAS/BRAF and other actionable mutations could also reliably identify tumors with DNA mismatch repair protein deficiency (MMR-D) on the basis of increased mutational load.

METHODS: We identified all CRCs that underwent genomic mutation profiling with a custom NGS assay (MSK-IMPACT) between March 2014 and July 2015. Tumor mutational load, with exclusion of copy number changes, was determined for each case and compared with MMR status as determined by routine immunohistochemistry.

RESULTS: Tumors from 224 patients with unique CRC analyzed for MMR status also underwent MSK-IMPACT. Thirteen percent (n = 28) exhibited MMR-D by immunohistochemistry. Using the 341-gene assay, 100% of the 193 tumors with < 20 mutations were MMR-proficient. Of 31 tumors with ≥ 20 mutations, 28 (90%) were MMR-D. The three remaining tumors were easily identified as being distinct from the MMR-D tumors with > 150 mutations each. Each of these tumors harbored the P286R hotspot POLE mutation consistent with the ultramutator phenotype. Among MMR-D tumors, the median number of mutations was 50 (range, 20 to 90) compared with six (range, 0 to 17) in MMR-proficient/POLE wild-type tumors (P < .001). With a mutational load cutoff of ≥ 20 and < 150 for MMR-D detection, sensitivity and specificity were both 1.0 (95% CI, 0.93 to 1.0).

CONCLUSION: A cutoff for mutational load can be identified via multigene NGS tumor profiling, which provides a highly accurate means of screening for MMR-D in the same assay that is used for tumor genotyping.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app