Add like
Add dislike
Add to saved papers

Macronutrient status of UK groundwater: Nitrogen, phosphorus and organic carbon.

Groundwater is a large, slowly changing pool of the macronutrients nitrogen (N), phosphorus (P) and dissolved organic carbon (DOC), with impacts on receptors, surface waters, dependent wetlands and coastal marine ecosystems. Sources of N to groundwater include fertilisers, animal wastes and septic effluents. N species are well-quantified in groundwater and NO3 -N has a wide range of median values (0-12mg/L). The highest concentrations are in the Chalk of East Anglia and Humberside and the Permo-Triassic Sandstone (PTS) of Staffordshire. The highest concentrations of NH4 -N are found in confined aquifers. N concentrations have increased with time peaking during the 1980s. Changes in practice have led to the reduction observed in rapidly-responding aquifers. For the Chalk, where the unsaturated zone is thick, improvements may not be seen for decades. P is less well-characterised in UK groundwater reflecting the lack of historical interest in groundwater P, although it can be significant in some aquifer matrices. Groundwater P concentrations are elevated in sandstone formations compared to other lithology and highest in the PTS of the Midlands and northern England (median values>50μg/L). Overall half of the aquifers studied in the UK have median TDP>50μg/L, with values of up to 100μg/L under some urban areas, such as Manchester and Liverpool as well as the Lee Valley. P concentrations in arable areas are variable (20-100μg/L), whereas under semi-natural conditions they are lower (20-50μg/L). There is little information on P trends in groundwater. Most DOC is derived from soils, playing an important part in redox processes. The aquifer matrix can contain high OC and contribute significantly to groundwater DOC. Median values range between 0.4 and 9mg/L, but rarely exceed 5mg/L, except in the Chalk of Yorkshire and Humberside and PTS of Liverpool which have long legacies of anthropogenic pollution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app