Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Omega-3 Fatty Acids Do Not Protect Against Arrhythmias in Acute Nonreperfused Myocardial Infarction Despite Some Antiarrhythmic Effects.

Ventricular arrhythmias are an important cause of mortality in the acute myocardial infarction (MI). To elucidate the effect of the omega-3 polyunsaturated fatty acids (PUFAs) on ventricular arrhythmias in acute nonreperfused MI, rats were fed with normal or eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA)-enriched diet for 3 weeks. Subsequently the rats were subjected to either MI induction or sham operation. ECG was recorded for 6 h after the operation and episodes of ventricular tachycardia/fibrillation (VT/VF) were identified. Six hours after MI epicardial monophasic action potentials (MAPs) were recorded, cardiomyocyte Ca(2+) handling was assessed and expression of proteins involved in Ca(2+) turnover was studied separately in non-infarcted left ventricle wall and infarct borderzone. EPA and DHA had no effect on occurrence of post-MI ventricular arrhythmias or mortality. Nevertheless, DHA but not EPA prevented Ca(2+) overload in LV cardiomiocytes and improved rate of Ca(2+) transient decay, protecting PMCA and SERCA function. Moreover, both EPA and DHA prevented MI-induced hyperphosphorylation of ryanodine receptors (RyRs) as well as dispersion of action potential duration (APD) in the left ventricular wall. In conclusion, EPA and DHA have no antiarrhythmic effect in the non-reperfused myocardial infarction in the rat, although these omega-3 PUFAs and DHA in particular exhibit several potential antiarrhythmic effects at the subcellular and tissue level, that is, prevent MI-induced abnormalities in Ca(2+) handling and APD dispersion. In this context further studies are needed to see if these potential antiarrhythmic effects could be utilized in the clinical setting. J. Cell. Biochem. 117: 2570-2582, 2016. © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app