JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Linker histone variant H1T targets rDNA repeats.

H1T is a linker histone H1 variant that is highly expressed at the primary spermatocyte stage through to the early spermatid stage of spermatogenesis. While the functions of the somatic types of H1 have been extensively investigated, the intracellular role of H1T is unclear. H1 variants specifically expressed in germ cells show low amino acid sequence homology to somatic H1s, which suggests that the functions or target loci of germ cell-specific H1T differ from those of somatic H1s. Here, we describe the target loci and function of H1T. H1T was expressed not only in the testis but also in tumor cell lines, mouse embryonic stem cells (mESCs), and some normal somatic cells. To elucidate the intracellular localization and target loci of H1T, fluorescent immunostaining and ChIP-seq were performed in tumor cells and mESCs. We found that H1T accumulated in nucleoli and predominantly targeted rDNA repeats, which differ from somatic H1 targets. Furthermore, by nuclease sensitivity assay and RT-qPCR, we showed that H1T repressed rDNA transcription by condensing chromatin structure. Imaging analysis indicated that H1T expression affected nucleolar formation. We concluded that H1T plays a role in rDNA transcription, by distinctively targeting rDNA repeats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app