Add like
Add dislike
Add to saved papers

Influence of magnetostimulation therapy on rheological properties of blood in neurological patients.

The aim of the study is to test the influence of in vivo magnetostimulation on the rheological properties of blood in neurological patients. Blood circulation in the body depends both on the mechanical properties of the circulatory system and on the physical and physicochemical properties of blood. The main factors influencing the rheological properties of blood are as follows: hematocrit, plasma viscosity, whole-blood viscosity, red cells aggregability, deformability, and the ability of red cells to orient in the flow. The blood samples were collected from neurological patients with pain. Blood samples were collected twice from each patient, that is, before the magnetostimulation and immediately after the therapy. For each blood sample, the hematocrit value was measured using the standard method. Plasma viscosity and whole-blood viscosity were measured by means of a rotary-oscillating rheometer Contraves LS40. Magnetic field was generated by the instrument Viofor JPS® and the magnetostimulation treatments were performed using M1P2 and M1P3 programs. The analysis of the results included estimation of the hematocrit value (Hct), plasma viscosity (ηp), whole-blood viscosity and rheological parameters of Quemada's model: k0, k∞, γ'c. Plasma viscosity values were obtained from the shear rate dependence of shear stress using the linear regression method. The results obtained in the study suggest that the blood rheological properties change in accord with applied magnetostimulation program.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app