Add like
Add dislike
Add to saved papers

Initial Preclinical Evaluation of 18F-Fluorodeoxysorbitol PET as a Novel Functional Renal Imaging Agent.

Accurate assessment of kidney function plays an essential role for optimal clinical decision making in a variety of diseases. The major intrinsic advantages of PET are superior spatial and temporal resolutions for quantitative tomographic renal imaging. 2-deoxy-2-18 F-fluorodeoxysorbitol (18 F-FDS) is an analog of sorbitol that is reported to be freely filtered at the renal glomerulus without reabsorption at the tubule. Furthermore, it can be synthesized via simple reduction of widely available 18 F-FDG. We tested the feasibility of 18 F-FDS renal PET imaging in rats.

METHODS: The systemic and renal distribution of 18 F-FDS were determined by dynamic 35-min PET imaging (15 frames × 8 s, 26 frames × 30 s, 20 frames × 60 s) with a dedicated small-animal PET system and postmortem tissue counting in healthy rats. Distribution of coinjected 99m Tc-diethylenetriaminepentaacetic acid (DTPA) was also estimated as a reference. Plasma binding and in vivo stability of 18 F-FDS were determined.

RESULTS: In vivo PET imaging visualized rapid excretion of the administrated 18 F-FDS from both kidneys, with minimal tracer accumulation in other organs. Initial cortical tracer uptake followed by visualization of the collecting system could be observed with high contrast. Split-function renography curves were successfully obtained in healthy rats (the time of maximal concentration [Tmax ] right [R] = 2.8 ± 1.2 min, Tmax left [L] = 2.9 ± 1.5 min, the time of half maximal concentration [T1/2max ] R = 8.8 ± 3.7 min, T1/2max L = 11.1 ± 4.9 min). Postmortem tissue counting of 18 F-FDS confirmed the high kidney extraction (kidney activities at 10, 30, and 60 min after tracer injection [percentage injected dose per gram]: 1.8 ± 0.7, 1.2 ± 0.1, and 0.5 ± 0.2, respectively) in a degree comparable to 99m Tc-DTPA (2.5 ± 1.0, 1.5 ± 0.2, and 0.8 ± 0.3, respectively). Plasma protein binding of 18 F-FDS was low (<0.1%), and metabolic transformation was not detected in serum and urine.

CONCLUSION: In rat experiments, 18 F-FDS demonstrated high kidney extraction and excretion, low plasma protein binding, and high metabolic stability as preferable properties for renal imaging. These preliminary results warrant further confirmatory studies in large animal models and clinical studies as a novel functional renal imaging agent, given the advantages of PET technology and broad tracer availability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app