Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Time Dependent Distribution of MicroRNA 144 after Intravenous Delivery.

BACKGROUND: miR-144 has potential benefits in protecting against myocardial ischemia and suppression of tumor growth. We have previously shown that a single intravenous injection of miR-144 provides potent cardioprotection, but its kinetics and distribution are not known.

METHODS: Single stranded mature miR-144 or Cy3-labelled-miR-144 was delivered into C57/B6 mice by tail vein injection.

RESULTS: After intravenous injection, the signal of Cy3-labelled-miR-144 in the kidney, brain, heart and liver peaks at 60 minutes, and is predominantly localised to the endothelium at that stage. In the kidney and heart, Cy3-labelled-miR-144 signal is detectable within the parenchymal tissues for at least 3 days, after which it starts to decrease, but brain Cy3-miR-144 signal rapidly decreases after 1 hour, and is lost at day 1, with no parenchymal uptake detected. Cy3-miR-144 signal can be detected until day 28 in the liver. Stem loop RTPCR confirmed the temporal pattern shown by miR-144 in kidney, brain and heart, but in liver there was a continuous rise following the initial injection until day 28 with no signs of decrease, suggesting de-novo synthesis.

CONCLUSION: There is early endothelial uptake of injected miR-144 followed by organ-specific distribution and kinetics. In the liver, there appears to be a positive feedback process that leads to continued accumulation of miR-144 that persists for at least 28 days. These observations should be taken into account when designing experiments utilizing parenteral miR-144 and assessing the biology of its actions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app