JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Vibronic Dynamics of the Ultrafast all-trans to 13-cis Photoisomerization of Retinal in Channelrhodopsin-1.

Channelrhodopsins are light-gated ion channels with extensive applications in optogenetics. Channelrhodopsin-1 from Chlamydomonas augustae (CaChR1) exhibits a red-shifted absorption spectrum as compared to Channelrhodopsin-2, which is highly beneficial for optogenetic application. The primary event in the photocycle of CaChR1 involves an isomerization of the protein-bound retinal chromophore. Here, we apply highly time-resolved vibronic spectroscopy to reveal the electronic and structural dynamics associated with the first step of the photocycle of CaChR1. We observe vibrationally coherent formation of the P1 intermediate exhibiting a twisted 13-cis retinal with a 110 ± 7 fs time constant. Comparison with low-temperature resonance Raman spectroscopy of the corresponding trapped photoproduct demonstrates that this rapidly formed P1 intermediate is stable for several hundreds of nanoseconds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app