Add like
Add dislike
Add to saved papers

Hydrological processes at Inle Lake (Southern Shan State, Myanmar) inferred from hydrochemical, mineralogical and isotopic data.

A one-year hydrochemical and isotopic monitoring was conducted at the Inle Lake, the second largest lake in Myanmar, also considering sediment samples. Lake waters are characterised by low electrical conductivities (236-489 μS/cm), neutral to alkaline pH (7.36-9.26), oxidising Eh (329-457 mV) and Ca-Mg-HCO3 facies. Stable isotopes indicate that lake waters are only slightly affected by evaporation, are fully flushed yearly and are not stratified. Carbonate equilibria dominate the lake water hydrochemistry. In summer, photosynthetic activity and temperature increase induce calcite precipitation, as testified by its high content in the sediments, up to 97 %, and by its isotopic composition. The short residence time and endogenic calcite precipitation likely prevent the accumulation of contaminants and nutrients in lake waters. This study suggests a high resilience of the system to anthropogenic disturbances and demonstrates the sediment potential for the reconstruction of the environmental evolution in time and for the anthropogenic impact assessment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app