Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Improved Homology Model of the Human all-trans Retinoic Acid Metabolizing Enzyme CYP26A1.

A new CYP26A1 homology model was built based on the crystal structure of cyanobacterial CYP120A1. The model quality was examined for stereochemical accuracy, folding reliability, and absolute quality using a variety of different bioinformatics tools. Furthermore, the docking capabilities of the model were assessed by docking of the natural substrate all-trans-retinoic acid (atRA), and a group of known azole- and tetralone-based CYP26A1 inhibitors. The preferred binding pose of atRA suggests the (4S)-OH-atRA metabolite production, in agreement with recently available experimental data. The distances between the ligands and the heme group iron of the enzyme are in agreement with corresponding distances obtained for substrates and azole inhibitors for other cytochrome systems. The calculated theoretical binding energies agree with recently reported experimental data and show that the model is capable of discriminating between natural substrate, strong inhibitors (R116010 and R115866), and weak inhibitors (liarozole, fluconazole, tetralone derivatives).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app