Add like
Add dislike
Add to saved papers

S100A8/A9 is associated with estrogen receptor loss in breast cancer.

Oncology Letters 2016 March
S100A8 and S100A9 are calcium-binding proteins that are secreted primarily by granulocytes and monocytes, and are upregulated during the inflammatory response. S100A8 and S100A9 have been identified to be expressed by epithelial cells involved in malignancy. In the present study, the transcriptional levels of S100A8 and S100A9 were investigated in various subtypes of breast cancer (BC), and the correlation with estrogen receptor 1 (ESR1) and GATA binding protein 3 (GATA3) gene expression was evaluated using microarray datasets. The expression of S100A8 and S100A9 in BC cells was assessed by reverse transcription-polymerase chain reaction (RT-PCR). The regulation of ESR1 and GATA3 by administration of recombinant S100A8/A9 was examined in the BC MCF-7 cell line using quantitative (q)PCR. The association between S100A8 and S100A9 and overall survival (OS) was investigated in GeneChip® data of BC. The expression levels of S100A8 and S100A9 were higher in human epidermal growth factor receptor 2 (Her2)-amplified and basal-like BC. The messenger (m)RNA levels of S100A8 and S100A9 were inversely correlated with ESR1 and GATA3 expression. S100A8/A9 induced a 10-fold decrease in the mRNA levels of ESR1 in MCF-7 cells. Poor OS was associated with high expression levels of S100A9, but not with high expression levels of S100A8 in BC. In conclusion, strong expression and secretion of S100A8/A9 may be associated with the loss of estrogen receptor in BC, and may be involved in the poor prognosis of Her2+/basal-like subtypes of BC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app