Add like
Add dislike
Add to saved papers

Collagen-rich stroma in aggressive colon tumors induces mesenchymal gene expression and tumor cell invasion.

Oncogene 2016 October 7
Gene expression-based classification systems have identified an aggressive colon cancer subtype with mesenchymal features, possibly reflecting epithelial-to-mesenchymal transition (EMT) of tumor cells. However, stromal fibroblasts contribute extensively to the mesenchymal phenotype of aggressive colon tumors, challenging the notion of tumor EMT. To separately study the neoplastic and stromal compartments of colon tumors, we have generated a stroma gene filter (SGF). Comparative analysis of stromahigh and stromalow tumors shows that the neoplastic cells in stromahigh tumors express specific EMT drivers (ZEB2, TWIST1, TWIST2) and that 98% of differentially expressed genes are strongly correlated with them. Analysis of differential gene expression between mesenchymal and epithelial cancer cell lines revealed that hepatocyte nuclear factor 4α (HNF4α), a transcriptional activator of intestinal (epithelial) differentiation, and its target genes are highly expressed in epithelial cancer cell lines. However, mesenchymal-type cancer cell lines expressed only part of the mesenchymal genes expressed by tumor-derived neoplastic cells, suggesting that external cues were lacking. We found that collagen-I dominates the extracellular matrix in aggressive colon cancer. Mimicking the tumor microenvironment by replacing laminin-rich Matrigel with collagen-I was sufficient to induce tumor-specific mesenchymal gene expression, suppression of HNF4α and its target genes, and collective tumor cell invasion of patient-derived colon tumor organoids. The data connect collagen-rich stroma to mesenchymal gene expression in neoplastic cells and to collective tumor cell invasion. Targeting the tumor-collagen interface may therefore be explored as a novel strategy in the treatment of aggressive colon cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app