Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Punicalagin attenuates palmitate-induced lipotoxicity in HepG2 cells by activating the Keap1-Nrf2 antioxidant defense system.

SCOPE: Free fatty acids (FFA) could induce hepatocyte lipotoxicity, which plays an important role in the initiation of nonalcoholic fatty liver disease (NAFLD). Inhibition of FFA-induced lipotoxicity is suggested as a potential treatment for nonalcoholic fatty liver disease. The aim of the current study is to explore the effect of punicalagin, a polyphenol abundant in pomegranate, on FFA-induced hepatic lipotoxicity and its potential mechanisms.

METHODS AND RESULTS: HepG2 cells were exposed to 250 μM palmitate for 24 h with or without punicalagin pretreatment. Punicalagin pretreatment attenuated palmitate-induced mitochondrial membrane potential lost, ATP depletion, and reactive oxygen species production. Punicalagin also increased hepatocyte viability by blocking mitochondria-mediated caspase-dependent apoptosis. The hepatoprotective effect was associated with an exaggerated phosphorylation of extracellular signal regulated kinase as well as significant nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and target genes induction. Blockage of extracellular signal regulated kinase by a pharmacological inhibitor abrogated the cytoprotective effect of punicalagin and its induction of Nrf2 pathway. Knockdown of Nrf2 by specific small interfering RNA also diminished the protective effects of punicalagin, while knockdown of Kelch-like ECH-associated protein 1 (Keap1) with small interfering RNA could promote Nrf2 nuclear translocation and exert similar protection as punicalagin treatment.

CONCLUSIONS: These findings suggest that punicalagin could effectively attenuate FFA-induced lipotoxicity by activating Keap1-Nrf2 cytoprotective signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app