Evaluation Study
Journal Article
Add like
Add dislike
Add to saved papers

The Effects of One-Anastomosis Gastric Bypass on Glucose Metabolism in Goto-Kakizaki Rats.

Obesity Surgery 2016 November
BACKGROUND: The improvement in glucose metabolism after bariatric surgery is well established. The aim of this study was to investigate the hormones and glycemic control in diabetes after a one-anastomosis gastric bypass (OAGB) variant in an animal model of non-obese type 2 diabetes mellitus.

METHODS: Thirty-six Goto-Kakizaki rats were randomly assigned to undergo one of the following procedures: OAGB (18 rats) or sham intervention (18 rats). Each group was subdivided into three additional groups according to the time of surgery (early-12 weeks; intermediate-16 weeks; and late-20 weeks). Weight, fasting glycemia, glucose tolerance test (OGTT), and hormone levels (glucagon, insulin, glucagon-like peptide-1 [GLP-1], and glucose-dependent insulinotropic peptide [GIP]) were measured.

RESULTS: All rats maintained their weight. The OGTT showed a significant improvement in glycemic levels in rats with OAGB in all time groups (p < 0.002, for all groups at 60 min). Insulin levels decreased significantly in all animals with OAGB, but glucagon levels increased (glucagon paradoxical response). GLP-1 and GIP increased in rats with OAGB at all times, but was only statistically significant in the early surgery group of GLP-1 (p < 0.005).

CONCLUSION: OAGB in a non-obese diabetic rat model improves glycemic control, with a significant decrease in glucose and insulin levels. This reduction without weight loss suggests a surgically induced enhancement of pancreatic function. It appears that this improvement occurs, although the GLP-1 levels were significantly increased only in the early stages. The paradoxical response of glucagon should be further evaluated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app