JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Production rate estimation of mycosporine-like amino acids in two Arctic melt ponds by stable isotope probing with NAH(13) CO3.

The net carbon uptake rate and net production rate of mycosporine-like amino acids (MAAs) were measured in phytoplankton from 2 different melt ponds (MPs; closed and open type pond) in the western Arctic Ocean using a (13) C stable isotope tracer technique. The Research Vessel Araon visited ice-covered western-central basins situated at 82°N and 173°E in the summer of 2012, when Arctic sea ice declined to a record minimum. The average net carbon uptake rate of the phytoplankton in polycarbonate (PC) bottles in the closed MP was 3.24 mg C · m(-3) · h(-1) (SD = ±1.12 mg C · m(-3) · h(-1) ), while that in the open MP was 1.3 mg C · m(-3) · h(-1) (SD = ±0.05 mg C · m(-3) · h(-1) ). The net production rate of total MAAs in incubated PC bottles was highest (1.44 (SD = ±0.24) ng C · L(-1) · h(-1) ) in the open MP and lowest (0.05 (SD = ±0.003) ng C · L(-1) · h(-1) ) in the closed MP. The net production rate of shinorine and palythine in incubated PC bottles at the open MP presented significantly high values 0.76 (SD = ±0.12) ng C · L(-1) · h(-1) and 0.53 (SD = ±0.06) ng C · L(-1) · h(-1) . Our results showed that high net production rate of MAAs in the open MP was enhanced by a combination of osmotic and UVR stress and that in situ net production rates of individual MAA can be determined using (13) C tracer in MPs in Arctic sea ice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app