Add like
Add dislike
Add to saved papers

Human Umbilical Vein Endothelial Cells foster conversion of CD4+CD25-Foxp3- T cells into CD4+Foxp3+ Regulatory T Cells via Transforming Growth Factor-β.

Scientific Reports 2016 March 19
Trans-placental cell trafficking is a naturally occurring process during pregnancy that results in the direct recognition of foreign maternal antigens by fetal tissue and vice versa. Immigration of potentially harmful allo-reactive maternal T cells into fetal circulation may provoke anti-fetal immune responses. However, the contact with fetal tissue may favor differentiation of maternal immune cells into cells with a regulatory phenotype. Human Umbilical Vein Endothelial Cells (HUVECs) possess immune-regulating properties and are one of the first fetal cells to get in contact with foreign maternal immune cells. Therefore, here we studied whether HUVECs induce the conversion of maternal T cells into regulatory T (Treg) cells. Moreover, we assessed whether this response is changing according to the sex of the HUVECs. Both female and male HUVECs induced the conversion of maternal T cells into Treg cells which is partially mediated via TGF-β. Female HUVECs showed a stronger capacity to induce Treg cells compared to male HUVECs. Our findings propose that HUVECs contribute to fetal-maternal tolerance by the increase of the Treg cell population. Sex-specific differences in Treg cell induction may partly account for the disparities on the incidence of infectious and autoimmune diseases between both sexes during early childhood.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app