JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Competition between B-Z and B-L transitions in a single DNA molecule: Computational studies.

Physical Review. E 2016 Februrary
Under negative torsion, DNA adopts left-handed helical forms, such as Z-DNA and L-DNA. Using the random copolymer model developed for a wormlike chain, we represent a single DNA molecule with structural heterogeneity as a helical chain consisting of monomers which can be characterized by different helical senses and pitches. By Monte Carlo simulation, where we take into account bending and twist fluctuations explicitly, we study sequence dependence of B-Z transitions under torsional stress and tension focusing on the interaction with B-L transitions. We consider core sequences, (GC)_{n} repeats or (TG)_{n} repeats, which can interconvert between the right-handed B form and the left-handed Z form, imbedded in a random sequence, which can convert to left-handed L form with different (tension dependent) helical pitch. We show that Z-DNA formation from the (GC)_{n} sequence is always supported by unwinding torsional stress but Z-DNA formation from the (TG)_{n} sequence, which are more costly to convert but numerous, can be strongly influenced by the quenched disorder in the surrounding random sequence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app