Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

VY6, a β-lactoglobulin-derived peptide, altered metabolic lipid pathways in the zebra fish liver.

Food & Function 2016 April
Today enormous research efforts are being focused on alleviating the massive, adverse effects of obesity. Short peptides are key targets for research as they can be generated from natural proteins, like milk. Here we conducted trypsinogen digestion of beta-lactoglobulin (β-lg), the major mammalian milk protein, to release the hexamer VY6. It was assayed in vivo for its activities on lipid metabolism using zebra fish as a vertebrate model. Zebra fish juveniles were injected with two different doses of the peptide: 100 and 800 μg per g fish and left for 5 days before sacrificing. Lipid measurements showed significant reduction in liver triglycerides and free cholesterol, as well as increased liver HDL cholesterol. Dose-dependent increases of the mRNA levels of the genes coding for the enzymes acyl coenzyme A oxidase 1 (acox1) and lipoprotein lipase (lpl) were also found. The complete results suggest significant anti-obesity activity of the β-lg-derived VY6 peptide. Its use as a nutraceutical has been discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app