Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Temporal-spatial gait parameters and neurodevelopment in very-low-birth-weight preterm toddlers at 18-22 months.

Gait & Posture 2016 March
Children born preterm with very-low birth-weight (VLBW) have increased risk of motor impairment. Early identification of impairment guides treatment to improve long-term function. Temporal-spatial gait parameters are an easily-recorded assessment of gross motor function. The objective of this study was to characterize preterm toddlers' gait and its relationship with neurodevelopment. Velocity, cycle time, step width, step length and time asymmetry, %stance, %single-limb support, and %double-limb support were calculated for 81 VLBW preterm and 43 typically-developing (TD) toddlers. Neurodevelopment was assessed with Bayley Scales of Infant Development-3rd Edition (BSID-III) motor composite and gross motor scores. Mean step width (p=.009) was wider in preterm compared to TD toddlers. Preterm toddlers with <85 BSID-III motor composite scores, indicating mild-to-moderate delay, had significantly increased step width, step length asymmetry, and step time compared to TD toddlers. Step time was also significantly longer for lower-scoring compared to higher-scoring (≥85 BSID-III motor composite scores) preterm toddlers, suggesting that step time may be particularly sensitive to gradations of motor performance. Velocity, cycle time, step length asymmetry, %stance, step length, and step time significantly correlated with BSID-III gross motor scores, suggesting that these parameters may be revealing of gross motor function. The differences in gait between lower-scoring preterm toddlers and TD toddlers, together with the correlations between gait and BSID-III motor scores, suggest that temporal-spatial gait parameters may be useful in building a clinically-relevant, easily-conducted assessment of toddler gross motor development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app