Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

The effects of storage temperature on PBMC gene expression.

BMC Immunology 2016 March 16
BACKGROUND: Cryopreservation of peripheral blood mononuclear cells (PBMCs) is a common and essential practice in conducting research. There are different reports in the literature as to whether cryopreserved PBMCs need to only be stored ≤ -150 °C or can be stored for a specified time at -80 °C. Therefore, we performed gene expression analysis on cryopreserved PBMCs stored at both temperatures for 14 months and PBMCs that underwent temperature cycling 104 times between these 2 storage temperatures. Real-time RT-PCR was performed to confirm the involvement of specific genes associated with identified cellular pathways. All cryopreserved/stored samples were compared to freshly isolated PBMCs and between storage conditions.

RESULTS: We identified a total of 1,367 genes whose expression after 14 months of storage was affected >3 fold in PBMCs following isolation, cryopreservation and thawing as compared to freshly isolated PBMC aliquots that did not undergo cryopreservation. Sixty-six of these genes were shared among two or more major stress-related cellular pathways (stress responses, immune activation and cell death). Thirteen genes involved in these pathways were tested by real-time RT-PCR and the results agreed with the corresponding microarray data. There was no significant change on the gene expression if the PBMCs experienced brief but repetitive temperature cycling as compared to those that were constantly kept ≤ -150 °C. However, there were 18 genes identified to be different when PBMCs were stored at -80 °C but did not change when stored < -150 °C. A correlation was also found between the expressions of 2'-5'- oligoadenylate synthetase (OAS2), a known interferon stimulated gene (IFSG), and poor PBMC recovery post-thaw. PBMC recovery and viability were better when the cells were stored ≤ -150 °C as compared to -80 °C.

CONCLUSIONS: Not only is the viability and recovery of PBMCs affected during cryopreservation but also their gene expression pattern, as compared to freshly isolated PBMCs. Different storage temperature of PBMCs can activate or suppress different genes, but the cycling between -80 °C and -150 °C did not produce significant alterations in gene expression when compared to PBMCs stored ≤ -150 °C. Further analysis by gene expression of various PBMC processing and cryopreservation procedures is currently underway, as is identifying possible molecular mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app