JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Lipid Raft-Mediated Membrane Tethering and Delivery of Hydrophobic Cargos from Liquid Crystal-Based Nanocarriers.

A main goal of bionanotechnology and nanoparticle (NP)-mediated drug delivery (NMDD) continues to be the development of novel biomaterials that can controllably modulate the activity of the NP-associated therapeutic cargo. One of the desired subcellular locations for targeted delivery in NMDD is the plasma membrane. However, the controlled delivery of hydrophobic cargos to the membrane bilayer poses significant challenges including cargo precipitation and lack of specificity. Here, we employ a liquid crystal NP (LCNP)-based delivery system for the controlled partitioning of a model dye cargo from within the NP core into the plasma membrane bilayer. During synthesis of the NPs, the water-insoluble model dye cargo, 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO), was efficiently incorporated into the hydrophobic LCNP core as confirmed by multiple spectroscopic analyses. Conjugation of a PEGylated cholesterol derivative to the NP surface (DiO-LCNP-PEG-Chol) facilitated the localization of the dye-loaded NPs to lipid raft microdomains in the plasma membrane in HEK 293T/17 cell. Analysis of DiO cellular internalization kinetics revealed that when delivered as a LCNP-PEG-Chol NP, the half-life of DiO membrane residence time (30 min) was twice that of free DiO (DiO(free)) (15 min) delivered from bulk solution. Time-resolved laser scanning confocal microscopy was employed to visualize the passive efflux of DiO from the LCNP core and its insertion into the plasma membrane bilayer as confirmed by Förster resonance energy transfer (FRET) imaging. Finally, the delivery of DiO as a LCNP-PEG-Chol complex resulted in the attenuation of its cytotoxicity; the NP form of DiO exhibited ∼30-40% less toxicity compared to DiO(free). Our data demonstrate the utility of the LCNP platform as an efficient vehicle for the combined membrane-targeted delivery and physicochemical modulation of molecular cargos using lipid raft-mediated tethering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app