Add like
Add dislike
Add to saved papers

Groupwise Dimension Reduction via Envelope Method.

The family of sufficient dimension reduction (SDR) methods that produce informative combinations of predictors, or indices, are particularly useful for high dimensional regression analysis. In many such analyses, it becomes increasingly common that there is available a priori subject knowledge of the predictors; e.g., they belong to different groups. While many recent SDR proposals have greatly expanded the scope of the methods' applicability, how to effectively incorporate the prior predictor structure information remains a challenge. In this article, we aim at dimension reduction that recovers full regression information while preserving the predictor group structure. Built upon a new concept of the direct sum envelope, we introduce a systematic way to incorporate the group information in most existing SDR estimators. As a result, the reduction outcomes are much easier to interpret. Moreover, the envelope method provides a principled way to build a variety of prior structures into dimension reduction analysis. Both simulations and real data analysis demonstrate the competent numerical performance of the new method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app