Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Long-term electromagnetic pulse exposure induces Abeta deposition and cognitive dysfunction through oxidative stress and overexpression of APP and BACE1.

Brain Research 2016 July 2
A progressively expanded literature has been devoted in the past years to the noxious or beneficial effects of electromagnetic field (EMF) to Alzheimer׳s disease (AD). This study concerns the relationship between electromagnetic pulse (EMP) exposure and the occurrence of AD in rats and the underlying mechanisms, focusing on the role of oxidative stress (OS). 55 healthy male Sprague Dawley (SD) rats were used and received continuous exposure for 8 months. Morris water maze (MWM) test was conducted to test the ability of cognitive and memory. The level of OS was detected by superoxide dismutase (SOD) activity and glutathione (GSH) content. We found that long-term EMP exposure induced cognitive damage in rats. The content of β-amyloid (Aβ) protein in hippocampus was increased after long-term EMP exposure. OS of hippocampal neuron was detected. Western blotting and immunohistochemistry (IHC) assay showed that the content of Aβ protein and its oligomers in EMP-exposed rats were higher than that of sham-exposed rats. The content of Beta Site App Cleaving Enzyme (BACE1) and microtubule-associated protein 1 light chain 3-II (LC3-II) in EMP-exposed rats hippocampus were also higher than that of sham-exposed rats. SOD activity and GSH content in EMP-exposed rats were lower than sham-exposed rats (p<0.05). Several mechanisms were proposed based on EMP exposure-induced OS, including increased amyloid precursor protein (APP) aberrant cleavage. Although further study is needed, the present results suggest that long-term EMP exposure is harmful to cognitive ability in rats and could induce AD-like pathological manifestation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app