Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Recognition of Histo-Blood Group Antigen-Like Carbohydrates in Lettuce by Human GII.4 Norovirus.

UNLABELLED: Human norovirus (HuNoV) genogroup II genotype 4 (GII.4) strains account for about 80% of the gastroenteritis outbreaks in the United States. Contaminated food is a major transmission vehicle for this virus. In humans, pigs, and oysters, histo-blood group antigens (HBGAs) act as attachment factors for HuNoVs. In lettuce, although the virus-like particles (VLPs) of a GII.4 HuNoV were found to bind to cell wall carbohydrates, the exact binding site has not been investigated. Here, we show the presence of HBGA-like carbohydrates in the cell wall of lettuce. The digestion of lettuce leaves with cell wall-degrading enzymes exposed more binding sites and significantly increased the level of binding of GII.4 HuNoV VLPs. Competition assays showed that both the HBGA monoclonal antibody, recognizing the H type, and plant lectins, recognizing α-l-fucose in the H type, effectively inhibited VLP binding to lettuce tissues. Lettuce cell wall components were isolated and their NoV VLP binding characteristics were tested by enzyme-linked immunosorbent assays. The binding was inhibited by pretreatment of the lettuce cell wall materials with α-1,2-fucosidase. Collectively, our results indicate that H-type HBGA-like carbohydrates exist in lettuce tissues and that GII.4 HuNoV VLPs can bind the exposed fucose moiety, possibly in the hemicellulose component of the cell wall.

IMPORTANCE: Salad crops and fruits are increasingly recognized as vehicles for human norovirus (HuNoV) transmission. A recent study showed that HuNoVs specifically bind to the carbohydrates of the lettuce cell wall. Histo-blood group antigens (HBGAs) are carbohydrates and are known as the attachment factors for HuNoV infection in humans. In this study, we show the presence of HBGA-like carbohydrates in lettuce, to which HuNoVs specifically bind. These results suggest that specifically bound HuNoVs cannot be removed by simple washing, which may allow viral transmission to consumers. Our findings provide new information needed for developing potential inhibitors to block binding and prevent contamination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app