Add like
Add dislike
Add to saved papers

In vitro assessment of 24 CYP2D6 allelic isoforms on the metabolism of methadone.

CYP2D6 is an important member of the cytochrome P450 (CYP450) enzyme super family, with at least 100 CYP2D6 alleles being previously identified. Genetic polymorphisms of CYP2D6 significantly influence the efficacy and safety of some drugs, which might cause adverse effects and therapeutic failure. The aim of this study was to clarify the catalytic activities of 24 CYP2D6 alleles on the oxidative in vitro metabolism of methadone. Reactions were incubated with 50-2000  µM methadone for 30 min at 37 °C and terminated by cooling to -80 °C immediately. Methadone and the major metabolite EDDP were analyzed by an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) system. Compared with wild-type CYP2D6*1, most variants showed significantly altered values in Vmax and intrinsic clearance (Vmax /Km ). Only three variants (CYP2D6*88, *91 and E215K) exhibited markedly increased intrinsic clearance values, and one variant CYP2D6*94 showed no significant difference. On the other hand, the kinetic parameters of two CYP2D6 variants (CYP2D6*92 and *96) could not be determined because they had no detectable enzyme activity, whereas 18 variants exhibited significantly decreased values. To sum up, this study demonstrated that more attention should be paid in clinical administration of methadone to individuals carrying these CYP2D6 alleles. Copyright © 2016 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app