Add like
Add dislike
Add to saved papers

An assessment of the ship drag penalty arising from light calcareous tubeworm fouling.

A test coupon coated with light calcareous tubeworm fouling was scanned, scaled and reproduced for wind-tunnel testing to determine the equivalent sand grain roughness ks. It was found that this surface had a ks = 0.325 mm, substantially less than the previously reported values for light calcareous fouling. This result was used to predict the drag on a fouled full scale ship. To achieve this, a modified method for predicting the total drag of a spatially developing turbulent boundary layer (TBL), such as that on the hull of a ship, is presented. The method numerically integrates the skin friction over the length of the boundary layer, assuming an analytical form for the mean velocity profile of the TBL. The velocity profile contains the roughness (fouling) information, such that the prediction requires only an input of ks, the free-stream velocity (ship speed), the kinematic viscosity and the length of the boundary layer (the hull length). Using the equivalent sandgrain roughness height determined from experiments, a FFG-7 Oliver Perry class frigate is predicted to experience a 23% increase in total resistance at cruise, if its hull is coated in light calcareous tubeworm fouling. A similarly fouled very large crude carrier would experience a 34% increase in total resistance at cruise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app