Add like
Add dislike
Add to saved papers

Spatiotemporal dynamics of distributed synthetic genetic circuits.

We propose and study models of two distributed synthetic gene circuits, toggle-switch and oscillator, each split between two cell strains and coupled via quorum-sensing signals. The distributed toggle switch relies on mutual repression of the two strains, and oscillator is comprised of two strains, one of which acts as an activator for another that in turn acts as a repressor. Distributed toggle switch can exhibit mobile fronts, switching the system from the weaker to the stronger spatially homogeneous state. The circuit can also act as a biosensor, with the switching front dynamics determined by the properties of an external signal. Distributed oscillator system displays another biosensor functionality: oscillations emerge once a small amount of one cell strain appears amid the other, present in abundance. Distribution of synthetic gene circuits among multiple strains allows one to reduce crosstalk among different parts of the overall system and also decrease the energetic burden of the synthetic circuit per cell, which may allow for enhanced functionality and viability of engineered cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app