Add like
Add dislike
Add to saved papers

Activation of multiple angiogenic signaling pathways in hemangiopericytoma.

Hemangiopericytoma (HPC) is a highly vascularized mesenchymal tumor. Local recurrence and distant metastasis are common features of HPC. Considering the remarkable hyper-vasculature phenotype of HPC, we assumed that dysregulated angiogenic signaling pathways were involved in HPC. The key components of angiogenic signaling pathways including VEGF-VEGF-R2, EphrinB2-EphB4 and DLL4-Notch were examined by real-time RT-PCR, Western blotting and immunostaining in 17 surgical specimens of HPC patients and in 6 controls. A significant upregulation of VEGF and VEGF-R2 associated with elevated levels of p-Akt and proliferating cell nuclear antigen (PCNA) was detected in HPC. Moreover, a dramatic increase in the mRNA and protein expression of EphB4 and its downstream factor p-Erk1/2 was found in HPC. A massive activation of core-components of DLL4-Notch signaling was detected in HPC. Double-immunofluorescent staining confirmed the expression of these upregulated key factors in the endothelial cells of tumor vessels. The present study identified the activation of multiple and crucial angiogenic signaling pathways, which could function individually and/or synergistically to stimulate angiogenesis in HPC and eventually contribute to tumor growth and progression. Our findings emphasize the importance to target multiple angiogenic signaling pathways when an anti-angiogenic therapy is considered for this highly vascularized tumor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app