Journal Article
Research Support, N.I.H., Extramural
Webcasts
Add like
Add dislike
Add to saved papers

Advanced age decreases local calcium signaling in endothelium of mouse mesenteric arteries in vivo.

Aging is associated with vascular dysfunction that impairs tissue perfusion, physical activity, and the quality of life. Calcium signaling in endothelial cells (ECs) is integral to vasomotor control, exemplified by localized Ca(2+) signals within EC projections through holes in the internal elastic lamina (IEL). Within these microdomains, endothelium-derived hyperpolarization is integral to smooth muscle cell (SMC) relaxation via coupling through myoendothelial gap junctions. However, the effects of aging on local EC Ca(2+) signals (and thereby signaling between ECs and SMCs) remain unclear, and these events have not been investigated in vivo. Furthermore, it is unknown whether aging affects either the number or the size of IEL holes. In the present study, we tested the hypothesis that local EC Ca(2+) signaling is impaired with advanced age along with a reduction in IEL holes. In anesthetized mice expressing a Ca(2+)-sensitive fluorescent protein (GCaMP2) selectively in ECs, our findings illustrate that for mesenteric arteries controlling splanchnic blood flow the frequency of spontaneous local Ca(2+) signals in ECs was reduced by ∼85% in old (24-26 mo) vs. young (3-6 mo) animals. At the same time, the number (and total area) of holes per square millimeter of IEL was reduced by ∼40%. We suggest that diminished signaling between ECs and SMCs contributes to dysfunction of resistance arteries with advanced age.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/aging-impairs-endothelial-ca2-signaling/.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app