Add like
Add dislike
Add to saved papers

Characterization of primary structure and post-hatching increase in chicken cytosolic acetoacetyl-coA thiolase in the liver.

Poultry Science 2016 June 2
Acetoacetyl-CoA thiolase (EC 2.3.1.9) catalyzes the cleavage of acetoacetyl-CoA into acetyl-CoA and its reverse reaction, the synthesis of acetoacetyl-CoA. Cytosolic acetoacetyl-CoA thiolase ( CT: ) is a key enzyme in the initial step of the cholesterol synthesis pathway. In the present study, we characterized the amino acid sequence of chicken CT and the tissue distribution of its mRNA and protein, together with their developmental changes in the liver. The amino acid sequence encoded by the nucleotide sequence of chicken CT cDNA showed a higher overall identity with those of human (74.3%) and rat (74.6%) CTs. Amino acid residues known to participate in enzymatic activity in human CT are conserved in chicken CT. Real-time PCR analysis revealed the expression of CT mRNA in the liver, kidney, adrenal gland, jejunum and ovary of adult hens, with higher levels in the liver, kidney, adrenal gland and ovary. Western blot analysis detected an immunoreactive protein of 41 kDa from cytoplasmic fraction but not particulate fractions of adult chicken liver. The immunoreactive protein was detected in all the tissues. The mRNA levels in the liver rapidly increased after hatching, with a maximum on d 5 post-hatching, after which they gradually decreased to adult levels. A similar change was observed in the protein levels. The increase in transcription and protein synthesis of CT suggests that the synthetic pathway of cholesterol from acetyl-CoA produced by CT replaces the hydrolysis of accumulated cholesteryl ester in the liver, in response to a change in the nutrient source from the lipid-rich yolk to a lower-lipid diet during the early post-hatching period.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app