Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Juvenile Antarctic rockcod (Trematomus bernacchii) are physiologically robust to CO2-acidified seawater.

To date, numerous studies have shown negative impacts of CO2-acidified seawater (i.e. ocean acidification, OA) on marine organisms, including calcifying invertebrates and fishes; however, limited research has been conducted on the physiological effects of OA on polar fishes and even less on the impact of OA on early developmental stages of polar fishes. We evaluated aspects of aerobic metabolism and cardiorespiratory physiology of juvenile emerald rockcod, ITALIC! Trematomus bernacchii, an abundant fish in the Ross Sea, Antarctica, to elevated partial pressure of carbon dioxide ( ITALIC! PCO2 ) [420 (ambient), 650 (moderate) and 1050 (high) μatm ITALIC! PCO2 ] over a 1 month period. We examined cardiorespiratory physiology, including heart rate, stroke volume, cardiac output and ventilation rate, whole organism metabolism via oxygen consumption rate and sub-organismal aerobic capacity by citrate synthase enzyme activity. Juvenile fish showed an increase in ventilation rate under high ITALIC! PCO2 compared with ambient ITALIC! PCO2 , whereas cardiac performance, oxygen consumption and citrate synthase activity were not significantly affected by elevated ITALIC! PCO2 Acclimation time had a significant effect on ventilation rate, stroke volume, cardiac output and citrate synthase activity, such that all metrics increased over the 4 week exposure period. These results suggest that juvenile emerald rockcod are robust to near-future increases in OA and may have the capacity to adjust for future increases in ITALIC! PCO2  by increasing acid-base compensation through increased ventilation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app