Add like
Add dislike
Add to saved papers

Mast cell stabilizers obviate high fat diet-induced renal dysfunction in rats.

The present study investigated the infiltration of mast cells into the kidney tissue and the preventive role of mast cell stabilizers against high fat diet (HFD)-induced renal injury in rats. The animals were fed on HFD (30% fat) for 12 consecutive weeks to induce renal injury. The HFD-induced obesity was assessed by calculating obesity index, adiposity index, and estimation of total cholesterol, triglycerides, and high density lipoproteins in plasma. The renal dysfunction was evaluated by measuring creatinine clearance, blood urea nitrogen, uric acid, electrolytes and microproteinuria. The oxidative stress in renal tissues was determined by myeloperoxidase activity, thiobarbituric acid reactive substances, superoxide anion generation and reduced glutathione level. The systolic blood pressure (SBP) was monitored using non-invasive blood pressure measuring apparatus. Histamine and hydroxyproline contents were quantified in renal tissues. Gross histopathological changes, mast cell density and collagen deposition in the renal tissue was determined by means of histopathology. The mast cell stabilizers, sodium cromoglycate and ketotifen were administered daily for 12 weeks. The HFD fed rats demonstrated significant increase in lipid profile, kidney injury with marked increase in renal oxidative stress, SBP, mast cell density, histamine content and hydroxyproline content that was attenuated by sodium cromoglycate and ketotifen treatment. Hence, the novel findings of this investigation suggest that HFD induced mast cells infiltration into kidney tissue seems to play an important role in renal pathology, and treatment with mast cell stabilizers serves as potential therapy in management of HFD induced renal dysfunction in rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app