JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

FDG-PET study of patients with Leigh syndrome.

We conducted a [(18)F]fluorodeoxyglucose positron emission tomography (FDG-PET) study in five patients (median age 11 (range 4-13) years) with Leigh syndrome to evaluate its usefulness for understanding the functional brain dysfunction in this disease and in future drug trials. Four patients were found to have reported mitochondrial DNA gene mutations. The brain T2-weighted magnetic resonance imaging (MRI) showed high-intensity areas in the putamen bilaterally in five patients, caudate bilaterally in four, thalamus bilaterally in two, and brainstem in one. Cerebellar atrophy was observed in older two patients. For disease control, seven age-matched epilepsy patients who had normal MRI and FDG-PET studies were selected. For semiquantitative analysis of the lesions with decreased (18)F-FDG uptake, the mean standard uptake value (SUV) was calculated in regions of interest (ROIs) placed in each brain structure. We compared the SUV of nine segments (the frontal, temporal, parietal, and occipital lobes, thalami, basal ganglia, mid-brain, pons, and cerebellum) between patients with Leigh syndrome and controls. The glucose uptake was decreased significantly in the cerebellum and basal ganglia, which could explain the ataxia and dystonia in patients with Leigh syndrome. Although this study had some limitations, FDG-PET might be useful for evaluating the brain dysfunction and treatment efficacy of new drugs in patients with Leigh syndrome. Further study with more patients using advanced methods to quantify glucose uptake is needed before drawing a conclusion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app